5,855 research outputs found

    Gas‐source molecular‐beam epitaxy using Si2H6 and GeH4 and x‐ray characterization of Si1−xGex (0≤x≤0.33) alloys

    Full text link
    Gas‐source molecular‐beam epitaxy (MBE) has been used to grow SiGe alloys with Si2H6 and GeH4 as sources on (100) Si substrates. Single‐crystalline epilayers with Ge composition as high as 33% have been produced at 610 °C, the lowest temperature hitherto used for gas‐source SiGe MBE. Growth parameters, growth modes, and the structural characteristics have been studied by a variety of in situ and ex situ techniques. Double‐crystal x‐ray diffraction data for the alloys have been obtained for the first time in thin mismatched layers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69862/2/JAPIAU-71-10-4916-1.pd

    Time--Splitting Schemes and Measure Source Terms for a Quasilinear Relaxing System

    Full text link
    Several singular limits are investigated in the context of a 2×22 \times 2 system arising for instance in the modeling of chromatographic processes. In particular, we focus on the case where the relaxation term and a L2L^2 projection operator are concentrated on a discrete lattice by means of Dirac measures. This formulation allows to study more easily some time-splitting numerical schemes

    The Etiology of Observed Negative Emotionality from 14 to 24 Months

    Get PDF
    We examined the magnitude of genetic and environmental influences on observed negative emotionality at age 14, 20, and 24 months. Participants were 403 same-sex twin pairs recruited from the Longitudinal Twin Study whose emotional responses to four different situations were coded by independent raters. Negative emotionality showed significant consistency across settings, and there was evidence of a latent underlying negative emotionality construct. Heritability decreased, and the magnitude of shared environmental influences increased, for the latent negative emotionality construct from age 14 to 24 months. There were significant correlations between negative emotionality assessed at age 14, 20, and 24 months, and results suggested common genetic and shared environmental influences affecting negative emotionality across age, and that age-specific influences are limited to non-shared environmental influences, which include measurement error

    Multiform antimicrobial resistance from a metabolic mutation

    Get PDF
    A critical challenge for microbiology and medicine is how to cure infections by bacteria that survive antibiotic treatment by persistence or tolerance. Seeking mechanisms behind such high survival, we developed a forward-genetic method for efficient isolation of high24 survival mutants in any culturable bacterial species. We found that perturbation of an essential biosynthetic pathway (arginine biosynthesis) in a mycobacterium generated three distinct forms of resistance to diverse antibiotics, each mediated by induction of WhiB7— high persistence and tolerance to kanamycin, high survival upon exposure to rifampicin, and MIC-shifted resistance to clarithromycin. As little as one base change in a gene encoding a metabolic pathway component conferred multiple forms of resistance to multiple antibiotics with different targets. This extraordinary resilience may help explain how sub31 sterilizing exposure to one antibiotic in a regimen can induce resistance to others and invites development of drugs targeting the mediator of multiform resistance, WhiB7

    Dietary Restrictions in Dialysis Patients: Is There Anything Left to Eat?

    Get PDF
    A significant number of dietary restrictions are imposed traditionally and uniformly on maintenance dialysis patients, whereas there is very little data to support their benefits. Recent studies indicate that dietary restrictions of phosphorus may lead to worse survival and poorer nutritional status. Restricting dietary potassium may deprive dialysis patients of heart-healthy diets and lead to intake of more atherogenic diets. There is little data about the survival benefits of dietary sodium restriction, and limiting fluid intake may inherently lead to lower protein and calorie consumption, when in fact dialysis patients often need higher protein intake to prevent and correct protein-energy wasting. Restricting dietary carbohydrates in diabetic dialysis patients may not be beneficial in those with burnt-out diabetes. Dietary fat including omega-3 fatty acids may be important caloric sources and should not be restricted. Data to justify other dietary restrictions related to calcium, vitamins, and trace elements are scarce and often contradictory. The restriction of eating during hemodialysis treatment is likely another incorrect practice that may worsen hemodialysis induced hypoglycemia and nutritional derangements. We suggest careful relaxation of most dietary restrictions and adoption of a more balanced and individualized approach, thereby easing some of these overzealous restrictions that have not been proven to offer major advantages to patients and their outcomes and which may in fact worsen patients' quality of life and satisfaction. This manuscript critically reviews the current paradigms and practices of recommended dietary regimens in dialysis patients including those related to dietary protein, carbohydrate, fat, phosphorus, potassium, sodium, and calcium, and discusses the feasibility and implications of adherence to ardent dietary restrictions and future research

    The SPEAR Instrument and On-Orbit Performance

    Full text link
    The SPEAR (or 'FIMS') instrumentation has been used to conduct the first large-scale spectral mapping of diffuse cosmic far ultraviolet (FUV, 900-1750 AA) emission, including important diagnostics of interstellar hot (10^4 K - 10^6 K) and photoionized plasmas, H_2, and dust scattered starlight. The instrumentation's performance has allowed for the unprecedented detection of astrophysical diffuse far UV emission lines. A spectral resolution of 550 and an imaging resolution of 5' is achieved on-orbit in the Short (900 - 1175 AA) and Long (1335 - 1750 AA) bandpass channels within their respective 7.4 deg x 4.3' and 4.0 deg x 4.6' fields of view. We describe the SPEAR imaging spectrographs, their performance, and the nature and handling of their data

    Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex

    Get PDF
    Dental caries causes tooth defects and clinical treatment is essential. To prevent further damage and protect healthy teeth, appropriate dental material is a need. However, the biocompatibility of dental material is needed to secure the oral environment. For this purpose, biocompatible materials were investigated for incorporated with dental capping material. Among them, nanomaterials are applied to dental materials to enhance their chemical, mechanical, and biological properties. This research aimed to study the physicochemical and mechanical properties and biocompatibility of a recently introduced light-curable mineral trioxide aggregate (MTA)-like material without bisphenol A-glycidyl methacrylate (Bis-GMA). To overcome the compromised mechanical properties in the absence of Bis-GMA, silica nanoparticles were synthesized and blended with a dental polymer for the formation of a nano-network. This material was compared with a conventional light-curable MTA-like material that contains Bis-GMA. Investigation of the physiochemical properties followed ISO 4049. Hydroxyl and calcium ion release from the materials was measured over 21 days. The Vickers hardness test and three-point flexural strength test were used to assess the mechanical properties. Specimens were immersed in solutions that mimicked human body plasma for seven days, and surface characteristics were analyzed. Biological properties were assessed by cytotoxicity and biomineralization tests. There was no significant difference between the tested materials with respect to overall physicochemical properties and released calcium ions. The newly produced material released more calcium ions on the third day, but 14 days later, the other material containing Bis-GMA released higher levels of calcium ions. The microhardness was reduced in a low pH environment, and differences between the specimens were observed. The flexural strength of the newly developed material was significantly higher, and different surface morphologies were detected. The recently produced extract showed higher cell viability at an extract concentration of 100%, while mineralization was clear at the conventional concentration of 25%. No significant changes in the physical properties between Bis-GMA incorporate material and nanoparticle incorporate materials
    corecore